

Стабилизатор напряжения фиксированный положительной полярности К1309EH1.2T, К1309EH1.8T, К1309EH2.5T, К1309EH3.3T

Стабилизатор напряжения регулируемый положительной полярности К1309EP1T

NC 2 17 NC 15 U₁ 13 EN GND 8 8 11 NC

ГГ – год выпуска НН – неделя выпуска

Основные характеристики микросхемы

- Диапазон входного напряжения микросхем:
 - К1309ЕН1.2Т от 2,0 до 5,5 В;
 - К1309ЕН1.8Т от 2,6 до 5,5 В;
 - К1309EH2.5T от 3,3 до 5,5 B;
 - К1309ЕН3.3Т от 4,1 до 5,5 В;
 - К1309EP1T от 2,0 до 5,5 В;
- Падение напряжение на регулирующем элементе (DropOut voltage) 800 мВ при токе 2 А;
- Регулируемое выходное напряжение от 1,0 до 4,5 В для микросхемы К1309ЕР1Т;
- Фиксированное выходное напряжение от 1,2 до 3,3 В для микросхем К1309ЕН1.2T, К1309ЕН1.8T, К1309ЕН2.5T, К1309ЕН3.3T;
- Защита от тока короткого замыкания и перегрева;
- Разрешающий вывод;
- Ток потребления в состоянии «Выключено» не более 50 мкА;
- Масса микросхем не более 2,5 г;
- Температурный диапазон от минус 60 °C до плюс 85 °C.

Тип корпуса

- 8-выводной металлокерамический корпус 4116.8-3.

Общее описание и области применения микросхемы

Микросхемы К1309ЕН1.2Т, К1309ЕН1.8Т, К1309ЕН2.5Т, К1309ЕН3.3Т и К1309ЕР1Т (далее — микросхемы) представляют собой стабилизаторы напряжения положительной полярности. Микросхемы предназначены для работы с током нагрузки до 2 А в системах, требующих низкого входного напряжения и низкого падения напряжения на регулирующем элементе. Падение напряжения на регулирующем элементе микросхем при токе 2 А не превышает 800 мВ. Нижняя граница входного напряжения микросхем зависит от типономинала и уровня выходного напряжения (таблица 2).

Выходное напряжение микросхемы К1309ЕР1Т настраивается в диапазоне от 1 до 4,5 В при помощи внешнего резистивного делителя.

Выходное напряжение микросхем K1309EH1.2T, K1309EH1.8T, K1309EH2.5T, K1309EH3.3T (далее – K1309EHx.xT) имеет фиксированное значение, соответствующее наименованию микросхемы, установленное конфигурацией внутреннего резистивного делителя.

В микросхемах реализованы функции защиты от короткого замыкания и перегрева, а также функция отключения по сигналу EN с переходом в режим пониженного потребления тока (не более 50 мкА).

Микросхемы устойчивы к изменениям входного напряжения, выходного тока и температуры.

Области применения микросхем:

- сетевые платы;
- материнские/периферийные платы;
- промышленные устройства;
- устройства беспроводной связи;
- декодеры каналов кабельного телевидения;
- медицинское оборудование;
- ноутбуки;
- устройства, питающиеся от батареи.

Содержание

1	Структурная блок-схема микросхем	4
2	Условное графическое обозначение	4
3	Описание выводов	5
4	Указания по применению и эксплуатации	5
5	Описание функционирования микросхемы	6
	5.1 Выбор внешних элементов	6
	5.2 Температурные условия	7
6	Типовые схемы включения микросхемы	
7	Электрические параметры	9
8	Предельно-допустимые характеристики	. 10
9	Справочные данные	. 11
10	Типовые зависимости	. 12
11	Габаритный чертеж микросхемы	. 13
	Информация для заказа	

1 Структурная блок-схема микросхем

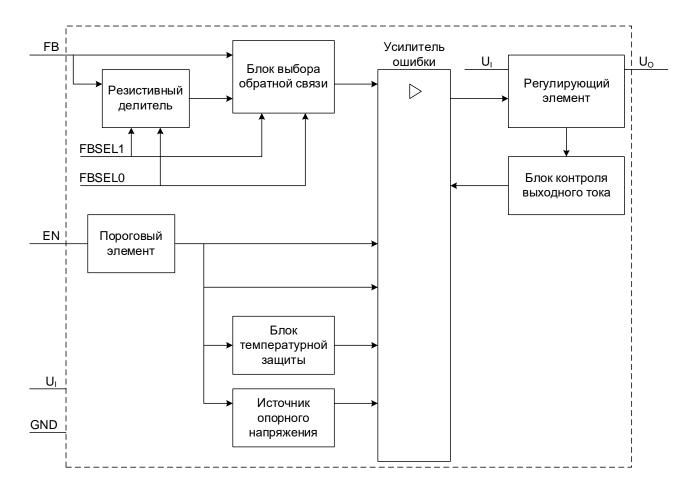


Рисунок 1 – Структурная блок-схема микросхем

2 Условное графическое обозначение

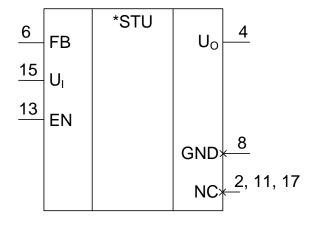


Рисунок 2 – Условное графическое обозначение

3 Описание выводов

Таблица 1 – Описание выводов микросхемы

Номер	Обозначение	Назначение вывода	
вывода	вывода		
2	NC	Не используется	
4	Uo	Выход напряжения	
6	FB	Вход обратной связи	
8	GND	Общий	
11	NC	Не используется	
		Вход разрешения работы:	
13	EN	«0» – отключено;	
		«1» – рабочий режим	
15	$U_{\rm I}$	Вход напряжения	
17	NC	Не используется	

4 Указания по применению и эксплуатации

При ремонте аппаратуры и измерении параметров микросхем замену микросхем необходимо проводить только при отключенных источниках питания.

Инструмент для пайки (сварки) и монтажа не должен иметь потенциал, превышающий 0,3 В относительно шины Общий.

Запрещается подведение каких-либо электрических сигналов (в том числе шин Питание и Общий) к выводам микросхем, не используемым согласно таблице 1.

Типовые схемы включения микросхем приведены на рисунках 3, 4.

Крышка корпуса электрически соединена с монтажной площадкой, выводом 8 и радиатором корпуса.

5 Описание функционирования микросхемы

Микросхемы представляют собой регуляторы напряжения положительной полярности.

Микросхемы сравнивают напряжение обратной связи, полученное с резистивного делителя, с внутренним опорным напряжением и регулируют выходное напряжение посредством регулировки напряжения затвора силового транзистора.

Для работы микросхемы K1309EP1T требуется использование внешнего резистивного делителя от выходного напряжения U_0 .

В микросхемах K1309EHx.xT реализован внутренний резистивный делитель. Для корректной работы микросхем K1309EHx.xT вывод FB должен быть соединен с выводом $U_{\rm O}$.

В микросхемах выполнены схемы ограничения выходного тока и температурной защиты. Схема ограничения тока работает непрерывно и ограничивает максимальный выходной ток микросхем. Схема температурной защиты отключает регулятор при достижении пороговой температуры на кристалле и возобновляет работу регулятора при остывании.

Сигнал разрешения работы EN при переводе в 0 отключает регулятор и переводит микросхемы в режим пониженного потребления.

5.1 Выбор внешних элементов

Конденсатор на входе U_I : чтобы предотвратить падение входного напряжения ниже 2,0 В, необходимо подключить конденсатор емкостью 10 мкФ к выводу входного напряжения. Для фильтрации высокочастотных помех необходимо поместить керамический конденсатор емкостью 1 мкФ в непосредственной близости от вывода U_I . В результате данных мер уменьшаются флуктуации входного напряжения при изменении выходного напряжения. При необходимости может быть добавлена дополнительная емкость.

Конденсатор на выходе U_0 : регулирующий элемент микросхемы, который обеспечивает стабильную регулировку напряжения при работе с емкостями нагрузки в диапазоне от $10 \text{ мк}\Phi \pm 10 \text{ %}$ до $100 \text{ мк}\Phi \pm 30 \text{ %}$ с паразитным последовательным сопротивлением в диапазоне от 0 до 5 Ом.

Помехоустойчивость: в условиях сильных электрических помех следует подключить керамический конденсатор номиналом 0,1 мк Φ между выводами U_I и GND, а также U_O и GND максимально близко к выводам устройства.

Выбор выходного напряжения микросхемы К1309EP1Т: для задания выходного напряжения микросхемы К1309EP1Т необходимо использовать внешний резистивный делитель, как показано на рисунке 3. Для обеспечения устойчивости и достижения требуемых характеристик необходимо использовать резисторы с погрешностью 0,1 %:

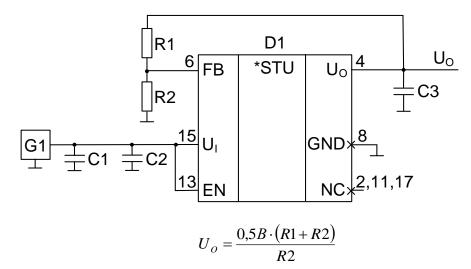
- $R2 \approx 10$ кОм (рекомендуемое значение);
- значение R1 рассчитывается по формуле:

$$R1 = \frac{R2 \cdot (Uo - 0.5B)}{0.5B}.$$
 (1)

Разрешающий вывод: Вывод EN рекомендуется соединять с выводом $U_{\rm I}$ непосредственно или через подтягивающий резистор.

5.2 Температурные условия

Условия эксплуатации при нагреве определяются допустимой температурой корпуса, равной 85 °C.

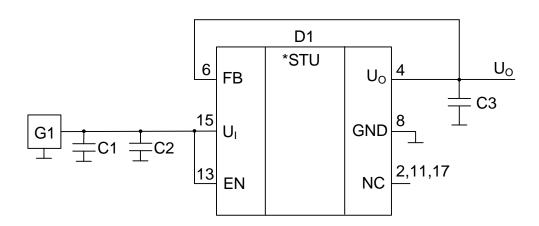

Нагрев корпуса зависит от температуры окружающей среды и мощности, рассеиваемой микросхемой.

Мощность, рассеиваемая на микросхеме, равна произведению выходного тока на разницу входного и выходного напряжений

$$P = (U_I - U_O) \cdot I_O = U_D \cdot I_O. \tag{2}$$

Уровень входного напряжения и допустимый ток нагрузки необходимо выбирать с учетом условия, что предельная мощность, рассеиваемая на микросхеме, не должна превышать предельно-допустимое значение 3 Вт.

6 Типовые схемы включения микросхемы



- C1 конденсатор емкостью 1 мк $\Phi \pm 10$ %;
- C2 конденсатор емкостью 10 мк $\Phi \pm 10$ %;
- C3 конденсатор емкостью от 10 мк $\Phi \pm 10$ % до 100 мк $\Phi \pm 30$ %;
- D1 микросхема К1309EP1T;
- G1 источник постоянного напряжения (2,0-5,5) B;
- R1 резистор сопротивлением

$$R1 = R2 \cdot (U_O - 0.5 B) / 0.5 B;$$

R2 – резистор сопротивлением ≈ 10 кОм (рекомендуемое значение).

Рисунок 3 — Типовая схема включения микросхемы K1309EP1T с внешним делителем

- C1 конденсатор емкостью 1 мк $\Phi \pm 10$ %;
- C2 конденсатор емкостью 10 мк $\Phi \pm 10$ %;
- C3 конденсатор емкостью от 10 мк $\Phi \pm 10$ % до 100 мк $\Phi \pm 30$ %;
- D1 микросхема К1309EHx.xT;
- G1 источник постоянного напряжения (2,0-5,5) B.

Рисунок 4 — Типовая схема включения микросхемы 1309EHx.xT с фиксированным выходным напряжением

7 Электрические параметры

Таблица 2 – Электрические параметры микросхем при приёмке и поставке

Наименование параметра,	Буквенное	Норма параметра		ypa °C
единица измерения, режим измерения	обозначение параметра	не менее	не более	Температура корпуса, °С
Выходное напряжение, В				
K1309EH1.2T		1,164	1,236	
K1309EH1.8T	T.T.	1,746	1,854	
K1309EH2.5T	U_{O}	2,425	2,575	
K1309EH3.3T		3,201	3,399	
K1309EP1T		1,0	4,5	
Минимальная разность напряжения вход-выход, В	U_D	-	0,8	
Входной ток на выводе FB, мкА микросхема K1309EP1T	I_{FB}	-	10	25
Ток потребления, мА	I_{CC}	-	3	25, 85,
Ток потребления в состоянии «Выключено», мкА при: $U_{EN} = 0$ В, $U_{O} = 0$ В	Iccz	-	50	- 60*
Входной ток высокого уровня на выводе EN, мкА	I _{IH_EN}	-	10	
Входной ток низкого уровня на выводе EN, мкА	I _{IL_EN}	- 10	-	
Ток срабатывания защиты, А	I _{O_LIM}	2,5	4,5	
Нестабильность по напряжению, %/В	K_{UI}	-	1	
Нестабильность по току, %/А	K _{IO}	-	1	
Относительное отклонение выходного напряжения от установленного, % микросхема К1309EP1T	ΔХотк	-3	3	

8 Предельно-допустимые характеристики

Превышение параметров, указанных ниже, может привести к необратимому повреждению устройства или к неправильному его функционированию. Не предусмотрено функционирование микросхемы вне условий, указанных в разделе «Электрические параметры».

Таблица 3 – Предельно-допустимые и предельные режимы эксплуатации микросхем

	Буквенное обозначение параметра	Норма параметра			
Наименование параметра,		Предельно-допустимый		Предельный	
единица измерения		режим		режим	
		не менее	не более	не менее	не более
Входное напряжение, В					
K1309EH1.2T		2,0	5,5	_	6,0
K1309EH1.8T	U_{I}	2,6	5,5	_	6,0
K1309EH2.5T		3,3	5,5	_	6,0
K1309EH3.3T		4,1	5,5	_	6,0
K1309EP1T		U _O + 0,8, но	5,5	_	6,0
K1309L111		не менее 2 В			
Напряжение высокого уровня на	U _{IH_EN}	1,6	$U_{\rm I}$	_	$U_{\rm I} + 0.3$
входе EN, B		1,0			
Напряжение низкого уровня на	U _{IL_EN}	0	0,4	0.2	
входе EN, B		U	0,4	-0,3	_
Ток нагрузки, А	I _O	0,01	2,0		I _{O_LIM}
Рассеиваемая мощность, Вт	P	_	3	_	4
при температуре корпуса + 85 °C					

 $\Pi\,p\,u\,m\,e\,u\,a\,h\,u\,e\,$ — Не допускается одновременное воздействие нескольких предельных режимов

9 Справочные данные

Таблица 4 – Справочные параметры микросхем

Наименование параметра,	Буквенное	Норма параметра			arypa ,°C	
единица измерения, режим измерения	обозначение параметра	не менее	типовая	не более	Температура среды, °С	
Опорное напряжение, мВ						
при: $U_I = 3,3 B, I_O = 10 MA$	$U_{ m REF}$	487		513	_	
микросхема К1309ЕР1Т						
Температура срабатывания защиты, °С	T_{THP}	150	170	185	_	
Ширина гистерезиса температур	$ \Delta T_{TH} $	10	15	20		
срабатывания/отпускания, °С					_	
Время установления выходного						
напряжения по сигналу EN, мкс					_	
K1309EH1.2T		_	50	300		
K1309EH1.8T	t_{ON}	=	75	450	-	
K1309EH2.5T		_	100	625	_	
K1309EH3.3T		_	140	825	_	
K1309EP1T		_	_	1125	_	
Диапазон нагрузочной ёмкости, мкФ	C_{LOAD}	10 ± 10 %		$100 \pm 30 \%$		
Паразитное сопротивление нагрузочной ёмкости	Resr_cload	0	_	5	_	

10 Типовые зависимости

Раздел находится в разработке.

11 Габаритный чертеж микросхемы

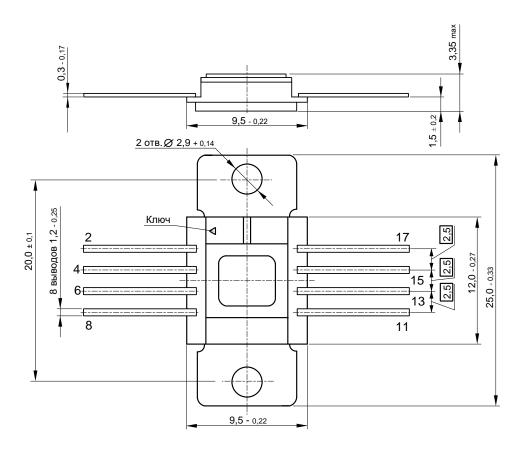


Рисунок 5 – Корпус 4116.8-3

12 Информация для заказа

Обозначение	Маркировка	Тип корпуса	Температурный диапазон, °С
K1309EH1.2T	411.2	4116.8-3	от – 60 до 85
K1309EH1.8T	411.8	4116.8-3	от – 60 до 85
K1309EH2.5T	412.5	4116.8-3	от – 60 до 85
К1309ЕН3.3Т	413.3	4116.8-3	от – 60 до 85
K1309EP1T	4201	4116.8-3	от – 60 до 85

Условное обозначение микросхем при заказе в договоре на поставку и в конструкторской документации другой продукции должно состоять из:

- наименование изделия микросхема;
- обозначения типа (типономинала);
- обозначения технических условий ТСКЯ.431000.002ТУ;
- обозначения спецификации ТСКЯ.431422.004СП.

Пример обозначения микросхем:

Микросхема К1309ЕР1Т – ТСКЯ.431000.002ТУ, ТСКЯ.431422.004СП.

Лист регистрации изменений

№ п/п	Дата	Версия	Краткое содержание изменения	№№ изменяемых листов
1	31.12.2024	1.0.0	Введена впервые	
2	31.03.2025	1.1.0	Исправлена блок-схема на рисунке 1.	4
			Исправлены значения параметра ton в таблице 4. Удален раздел Особенности работы	11
3	07.04.2025	1.2.0	В таблице 3 изменена норма «не менее» предельно- допустимого режима входного напряжения U _I для К1309EP1T	10
4	23.04.2025	1.2.1	Уточнено наименование параметра t _{ON} таблице 4	11
5	16.06.2025	1.2.2	Исправлены типовые схемы включения на рисунках 3, 4	8